
I

Orientation Dependence of the Acoustic Backscatter for

Elongated Zooplankton I
AD-A274 760 by

Matthew Lloyd Johnson
B.S., Mechanical Engineering

University of New Mexico (1986)

DIC Submitted in partial fulfillment of the
SLECTE requirements for the degree ofTr.s 0 61994

OCEAN ENGINEER

"at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the
WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 1993
© Matthew L. Johnson, 1993

The author hereby grants to MIT, WHOI and the U.S. Government
permission to reproduce and to distribute copies of this thesis document in

whole or in part. This document has been approved
for public telease anud sale; its
_distrbutios uinliited.

Signature of Author
" Joint Program in Applied O6ean Sciencea'nd' Engineering

Massachusetts Institute of Technology
Woods Hole Oceanographic Institution

Certified by ........... !•.. .. ý .........................................
Dr. Timothy K. Stanton

Associate Scientist
Woods Hole Oceanographic Institution

Thesis Supervisor

Accepted by ....... .. ..... . ........................................
Dr. Arthur B. BaggeroerChairman, Joint Committee for Applied Ocean Science and Engineering

Massachusetts Institute of Technology / Woods Hole Oceanographic Institution

P<=. s Q0 4



Orientation Dependence of the Acoustic Backscatter for

Elongated Zooplankton

by

Matthew Lloyd Johnson

Submitted to the Massachusetts Institute of Technology /
Woods Hole Oceanographic Institution

Joint Program in Applied Ocean Science and Engineering
in partial fulfillment of the

requirements for the degree of
Ocean Engineer

Abstract

The width of the main lobe of the acoustic backscatter directivity pattern of decapod shrimp
(Palaemonetes vulgaris) is examined versus acoustic frequency. Using the distorted wave
Born approximation (DWBA) and the geometry of a prolate spheroid, an analytic formula
for the backscatter cross section as a function of orientation angle is derived. A directivity
pattern is determined from the analytic formula and the width of the main lobe (beamwidth)
is computed. The relationship between beamwidth and acoustic frequency is presented in
plots of beamwidth versus ka and LI/. The model is adapted to experimental limitations of
animal motion, discrete sampling and observed side lr'e levels. The backscatter directivity
patterns of live decapod shrimp, determined experimentally at frequencies between 72 and
525 kHz, are presented. A non-monotonic relationship between beamwidth and frequency
is illustrated in this study. This relationship is in contrast to the monotonic relationship
exhibited when sound scatters off of an impenetrable flat plate. Reasonable agreement is
found between the theoretically predicted beamwidths and most experimental data, where
the beamwidth was more-or-less oscillatory about a mean value of 190. The structure can at
least be partly explained by scattering theory.
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Chapter 1

Introduction

1.1 Motivation

Plankton play a primary role in the food chain of the ocean [1]. Measurement of the

abundance, diversity, and size distribution of plankton is vital to understanding the re-

sources present in the ocean. Accurate, quantitative measurements of these resources will

allow for the trends in these resources to be determined. By measuring these trends in

organisms at the base of the food chain, the effects of environmental changes (whether

natural or man-made) can be more accurately and rapidly predicted.

Present methods of measuring the abundance and diversity of zooplankton in the

ocean rely upon sampling with various types of plankton nets. Net sampling leads to inac-

curacies by only being able to sample a very small region, and then extrapolating the results

to a much larger region. Also, there is a significant time lag between sampling and deter-

mining the results. Finally, the plankton net is invasive, and as many zooplankton are free-

swimmers, the animals avoiding the net will cause further inaccuracies in the data gathered.

Advanced methods of acoustically measuring populations of larger zooplankton,

such as decapod shrimp (Palaemonetes vulgaris), are currently being developed [2,3,4].

Acoustic measurements of zooplankton allow greater areas of the ocean to be investigated at

a faster rate than with plankton nets. Additionally, acoustic measurements are noninvasive

and much more suitable to the study of free-swimming zooplankton [5].

10



List of Tables

Table 3-1
Sound Speeds (m/s) for Various Temperatures and Salinities ............... 55

Table 3-2
Distance to Farfield (Rif) for Various Transducers (c-1520 m/s) ........... 58

Table 3-3
Diameters of the First Fresnel Zone for Ranges of 50 and 100 cm ............. 61

Table 3-4
Electronic Equipment used in the Data Acquisition System .................. 63

Table 3-5
Bandpass Filter Settings .............................................................. 63

Table 3-6
Transducer Angles at Ranges of 54 and 107 centimeters ...................... 68

Table 3-7
Animal Size and Data Sampled in the Experiments ............................. 71

Table 3-8
Experimentally Measured Beamwidths from Narrowband Analyses ............ 82

Table 3-9
Experimentally Measured Beamwidths from Broadband Analyses .............. 84

Table 3-10
Data from Greenlaw's Measurements of Euphausia pacifica (1990) ............ 88

9



To remotely estimate zooplankton populations, a scattering model for the species of

interest must be known [5,6]. The target strength predicted from these models is strongly

dependent upon the size, shape, acoustic frequency, material properties (mass density and

speed of sound contrasts) and orientation. By measuring the target strength of the zoo-

plankton being investigated over a range of frequencies, the size distribution and abundance

of the organisms can be determined [7,8,9]. (For a given species, the shape and material

properties can be accounted for in the development of the scattering model.)

1.2 Problem Statement

The development of a useful acoustic backscattering model for elongated zooplank-

ton, specifically decapod shrimp (Palaemonetes vulgaris), is a very complex task. The

simplest model is the fluid sphere [10]. Greenlaw used this model for zooplankton, but

discovered that the scattering behavior is influenced by shape [11]. As seen in Fig. I-1,

elongated animals cannot be modeled sufficiently by a simple mathematical shape, such as a

sphere [2].

In a series of papers, Stanton developed an approximate model for the acoustic

backscattering from deformed elongated bodies [12,13,14]. Stanton and colleagues later

simplified the approach by using a ray theory so that simple, yet accurate descriptions of

the scattering by fluid-like animals were possible [3,41. The good comparison between the

new models and data suggests that certain elongated zooplankton behave acoustically as

finite cylinders.

This thesis complements the work of Chu et al [2] by measuring the orientation

dependence of individual animals over a wide range of acoustic frequencies. Similar work

has been done by Greenlaw, but over a more limited frequency range [15]. The back-
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scattered pressure from these animals is highly orientation dependent. The main lobe of the

backscatter directivity pattern corresponds to angles of incidence near broadside. This

thesis will present a relationship between the width of the main lobe and acoustic frequency

for Palaemonetes vulgaris.

Figure 1-1: Decapod shrimp (Palaemonetes vulgaris). a common nearshore species of shrimp. (This
species is used because it is readily available, and is similar in size and shape to many oceanic species of
zooplankton. The animal is shown with the tail curled. The animal normally has its tail extended. so its
shape is generally that of a prolate spheroid.)

1.3 Overview

Chapter 2 gives the development of the model used to predict the width of the main

lobe of the backscatter directivity pattern as a function of acoustic frequency. The de-

formed cylinder model used by Stanton et al [3] would be inappropriate for this analysis, as

12



their model is designed for averages over angle of orientation rather than instantaneous

realizations at any given angle. In their approach. the model is more accurate near broad-

side incidence. The distorted wave Born approximation (DWBA) lends itself more readily

for predicting the target strength as a function of orientation angle for all orientation angles.

The geometry of a prolate spheroid is used as it approximates the geometric shape of the

animal [ 1I]. The formulation of the Helmholtz-Huygens integral is presented and simpli-

fied using the DWBA. An expression for the backscatter directivity pattern is developed

by applying the geometry of the prolate spheroid to the DWBA integral, and solving the

integral. This analytic model is then adjusted to reflect practical limitations encountered in

the experiment. Specifically, the model is corrected for the motion of the live shrimp and

sampling limitations within the experimental data.

Chapter 3 details the experimental procedure, in which individual live decapod

shrimp were tethered and rotated through a full circle while being insonified with frequen-

cies from 72 to 525 kHz. The backscattered pressure wave was recorded as a function of

frequency and orientation angle of the animal. From this data, the actual backscatter direc-

tivity pattern for the animals was produced.

Chapters 4 and 5 discuss and summarize the results, and present conclusions.
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Chapter 2

Theoretical Development

2.1 Helmholtz-Huygens Integral

2.1.1 Basic Equations

The Helmholtz-Huygens integral is a solution to the three dimensional wave equa--

tion. The three dimensional wave equation is derived from the linearized forms of three

basic equations: the adiabatic equation of state, the Euler equation, and the continuity

equation [ 161.

These three equations relate the variables pressure, p, density, p, and particle ve-

locity, v. The total pressure consists of two components, a hydrostatic pressure, p0 , and

a dynamic or "excess" (sound) pressure p,:

p = pA + pA. (2.1)

The hydrostatic pressure is assumed constant, so the differential pressure, dp, is equal to:

dp = dpi. (2.2)

Similarly for particle velocity, there is a static and a dynamic (sound) component:

v = V0 + vi (2.3)

dv = dv1 . (2.4)
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For an inhomogeneous media, there are three components to density. There is a hydro-

static density, po, there is the local change in static density, Ap0, and there is the dynamic

(sound) density, p,:

P=P0 +Apo +P1  (2.5)

dp = dp,. (2.6)

Both the hydrostatic density and local change in static density are assumed to be much

greater than the dynamic density.

The adiabatic state equation asserts that the pressure is a function of density:

p = f(p). (2.7)

The differential pressure can then be represented as a Taylor series in terms of f(p):

dp = ( .d") )dp+ df(p)' -- (dp +-+ (2.8)
Sdp) P=O dp2 ,) o 2

Since the changes in pressure and density are assumed to be small, the higher order terms

can be neglected. Also, this lets us define

"c .- a-JP,' (2.9)

and assume, c2 = constant. Thus, Eq. (2.8) simplifies to:

dp=c2dp. (2.10)

Integrating Eq. (2.10) produces the linearized adiabatic state equation:

p = C2p + constant. (2.11)

To clear the constant term, we take the total derivative of Eq. (2.11):
dP =c 2 dP. (2.12)

dt dt

Since pressure varies slowly with position over regions small compared to the wavelength,

the adiabatic equation of state can be written as

_ 2 d=-+V2 P (2.13)-d" -"I2.

Euler's equation is derived from the linearized conservation of momentum for a

fluid bundle. The name "Euler" comes from the use of the Euler description, in which the

15



coordinate system is fixed in space and the fluid is observed to move past the fixed refer-

ence point. The Euler equation is found by applying Newton's Second Law of Motion

(F = mdv/dt) to the Eulerian fluid bundle shown in Fig. 2-1. The force balance (the left

hand side of Newton's Second Law) on the fluid bundle is given as:

F = [p(x) - p(x + dx)Idydzer + [p(y)- p(y+ dy)]dxdzey + [p(z) - p(z + dz)Jdxdye..

(2.14)

EULER'S EQUATION GEOMETRY

z

-p(z+dz)

p(y) p(x)

dy y

x pz

Figure 2- i: Forces acting on an Eulerian differential fluid volume.

The right hand side of Newton's Second Law is given as:

mdv/dt= pdV(-O +Vv•v. (2.15)

Dividing Eqs. (2.14) and (2.15) by dV = dxdydz, reducing the left hand side and setting

the results equal to each other yields:

-Vp=p -t+Vv v (2.16)-VP P(dt

The Euler equation can be further reduced by assuming that v is small (thus the second or-

der term Vv * v becomes negligible). The resulting equation is:
-Vp=d .. (2.17)

16



The continuity equation provides the third relationship between particle velocity,

pressure and density. The equation is derived by applying the principle of conservation of

mass to a small volume (Fig. 2-2). The principle of conservation of mass states that the

difference between the mass entering the volume and the mass leaving the volume is the

change in mass in the volume:

mrin -- M, = Am. (2.18)

CONTINUITY EQUATION GEOMETRY

z

v(z+dz)dt

v(x)dt

yx v(z)dt

Figure 2-2: Particle velocities acting on the faces of a differential fluid volume.

The mass entering the differential volume is:

m,. = [p(x)v(x)dydz + p(y)v(y)dxdz + p(z)v(z)dxdy]dt. (2.19)

The mass leaving the differential volume is:

m,., = [p(x + dx)v(x + dx)dydz + p(y + dy)v(y + dy)dxdz + p(z + dz)v(z + dz)dxdy]dt.

(2.20)

Subtracting Eq. (2.20) from Eq. (2.19), and converting to vector notation:

min m,,k, = -V * (pv)dtdxdydz. (2.21)

The mass change within the differential volume is:

A -m = Ldtdxdydz. (2.22)

dt

17



Equating Eqs. (2.21) and (2.22), then canceling like terms, produces:
-V 0 (dv) = dp

dt

-(Vp, v + pV, v)= L- Vp- v
dt

-V 0 v Z= Ildp (2.23)
pdt

Applying Eq. (2.12) to the right hand side of Eq. (2.23) yields:

-VOv =- .p (2.24)pe•at"

In summary, we have:
dp = '( dp + Vp *v') (equation of state) (2.25)
dt at

d = -1 P(Euler's equation) (2.26)dt p

V •v = -1p (continuity equation). (2.27)
pc2 dat

2.1.2 Wave Equation

The previous section developed a set a three equations relating three variables

(particle velocity, density and pressure). These three equations can be manipulated into one

equation and one unknown - this is the three dimensional wave equation.

The first step is to relate Euler's equation to the continuity equation, and eliminate

particle velocity as a variable. This is done by taking the divergence of Euler's equation

[Eq. (2.26)]

dv _ VIp) (2.28)
dt (

and the time derivative of the continuity equation [Eq. (2.27)]
d ,v)_ d I( !p). (2.29)
dt dt 1pc2 dt

18



Then setting them equal to each other, recalling that
dv dV. 7d = d Vv); (2.30)

the result is the wave equation for an inhomogeneous medium:

V *(IVP) = E (_Td}) (2.31)

This problem deals with a discrete inhomogeneity within a homogeneous medium

(Fig. 2-3). The effect of small inhomogeneities, [such as an animal with constant density,

pa, and sound speed, c., in a homogeneous environment (po,co)], can be accounted for

by adding and subtracting the corresponding terms for the homogeneous medium to the in-

homogeneous wave equation [Eq. (2.31)] [161:

p 2 L dp (2.32).V+-VPJ -- 22 p•~ t
A AP pc dt c

PROBLEM GEOMETRY I

Discrete Volume (V)
a

Homogeneous Medium ( pc )
0 0

Figure 2-3: Discrete ir'omogeneity within a homogeneous medium.

By treating the densities as discrete constants, Eq. (2.32) reduces to:

V II +' oVp ( 1 1 _ I d2p I d2p

[(P A4 A0  ] PC2  ;)OC. dt2  pC0c2 dtl

(oA. &:7v2+ 1 V2P= POC - pc' d I ld'p
pop ) P0 pC2p0O dt 2  p0 c4 d,2
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(p pIp Ipc IdI 1da

Vo Vpi+V'p- - dp + _
p C2 c02 dt 2  co2 dt 2

P-I d2p = (V P -Ap) +p~c2 -pc' I d 2p(.3CV2o 1  VP PC2 Cd2 dr2  (2.33)

The compressibility (Kc) of a fluid is:
1

K 2 .(2.34)
PC

Substituting into Eq. (2.33):
1Vdp, !~?~V (p-Povp'+1- ~ 1 d2p

V2p cIt2  ) =V6 ----• K I d t2 (2.35)

To further simplify the inhomogeneous wave equation, let us define a density factor (7.)

and a compressibility factor ( y,,) as:

P-Po rcV.
yp(r)=ý IrP (2.36)

1 - 0  r(zVa 2.7
"K-Ko rcV.7. (r)= Ko (2.37)

0 r (z V,..

These factors reduce Eq. (2.35) to:

V dpI = V.(yIVp)+ , 1 2p (2.38)c02P C dt2 C02 dt2"

The temporal derivatives can be eliminated by assu -ming that the pressure is a periodic -pure

tone" function [16]:

p = 0pei

-dt=

2

-kco Y P. (2.39)

Thus, the final form of the inhomogeneous wave equation is [17]:

V2p+ kp= V (YVp)- 7kp. (2.40)
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2.1.3 Integral Solution to the Wave Equation

The inhomogeneous wave equation is solved by use of the Green's function. The

Green's function, g(rdr 0 ), is a solution for the unbounded medium, of the equation:

V2 g(rlr) + 4g(rlro) = -S(r - ro). (2.41)

Here, g(rdro) is the Green's function at observation point r, observing the point r0 . The

position vectors are:
r = xe, + yey + ze.

ro = xe,, + yey. + ze.(

The inhomogeneous wave equation is:

V2p(r) + kp(r) = V * [y,(r)Vp(r)]- 7,(r)k4p(r). (2.43)

By multiplying Eq. (2.41) by p(r) and Eq. (2.43) by g(rro) the following results are at-

tained:

p(r)V2g(dro) + p(r)k2 g(rlro) = -p(r)6(r - ro) (2.44)

g(rlro))V'p(r) + g(rlro)4p(r) = -g(rdro)f(r), (2.45)

where, f(r) is defined as:

f(r) a -IV *[y,,(r)vp(r)] - y,, (r)k4p(r)}. (2.46)

Subtracting Eq. (2.44) from Eq.(2.45):

g(rIro)V 2p(r) - p(r)V'g(rdro) = p(r)8(r - ro) - g(rro)f(r). (2.47)

Using the reciprocity theorem for Green's functions, the symmetry of the delta function,

and interchanging the position vectors r and ro, Eq. (2.47) can be written as:
g(rjro)Vop(ro) - p(ro )V2g(dr o)= p(ro)b(r - r o) - g(r)f(r), (2.48)

where,
d d

V0  e-,+-e. +-e. (2.49)
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Integrating over the spatial volume (dVo = dxodyodzo),

JJJ [g(ýr.o)v'p(ro) - p(ro)V' (dr.r)]dv 0  (2.50)

-fff p(ro)5(r - ro)dVo - fff g(rdro)f(ro)dVo

Since the first term on the right hand side is an integral over a delta function,

p(r) = fff p(ro)b(r - ro)dVo. (2.51)

Thus, Eq. (2.50) can be rewritten as:

p(r) = fff [g(rOro)Vop(ro)- p(ro)Vog(rOro)]dVo + fff g(iro)f(ro)dVo"

(2.52)

Noting that the first integrand is the divergence of a vector,

g(drOr)V'p(rO) -p(r 0 )V'g(ýrjr) =V 0 [g(dror)Vop(r 0 ) -p(r 0 )Vog(rlr0 )J,
(2.53)

this allows the first integral to be reduced, via the second Green formula, from a volume

integral to a surface integral [1 8],

fff [g(rOr )Vop(ro) - p(ro )Vog(rOro)]dVo

J [ ar).-~o-~r).lgdo S (2.54)

Here, the normal component of the gradient of a function in the outward direction, is de-

fined as dl/dno. The pressure at any position, r, is now described by the equation [ 16]:

•r) = JJ [g(rro)•-ý P(ro)-p(ro)-a g(rro)]dSo+ fffg(rjro)f(ro)dVo"

(2.55)

Up to this point, there have been no assumptions as to the nature of the pressure wave.

What is desired is to predict the total pressure, p, (r), which is the sum of a known incident

pressure, pi(r), and a scattered pressure from an inhomogeneity. The total pressure at any

position r, is

p,(r) = ff [g(rdro )- p, (ro) - p, (ro )-L g(dro )]dSo + fff g(rro )f, (ro)dVo,

(2.56)
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where,

f,(ro)-= -+V0 *[y,(r.)Vop()- y.(r0 )kp(r)}. (2.57)

The total pressure is represented by the pressure wave on the surface bounding the medium

(the surface integral) and the pressure wave within the volume of the bounding medium

(the volume integral). The Green's function for Eq. (2.41) is for an unbounded medium,

therefore the surface integral is over a boundary at infinity. At infinity, the only contribu-

tion to the total pressure wave is from the incident wave, pi(r), since any components

from the volume scatterer would go to zero due to spherical spreading as the distance ap-

proached infinity. This implies that the incident pressure wave can be substituted for the

surface integral [ 17],

pi(r) = ff [g(riro) d p,(ro )- p#(0 ) )dg(dror ]ds0. (2.58)

Substituting Eqs. (2.57) and (2.58) into Eq. (2.56):

p,(r)= p,(r)+ J.J {7.(ro)k4p,(ro)-Vo.[r,(ro)Vop,(ro)Jg(rro)dVo" (2.59)

Distributing the Green's function and separating the integrand gives

p, (r) = p, (r) + JJJ k 7. (ro )g(Iro )P, (r0o)dVo - fJ" g(rro )Vo * [r,(ro )Vop, (ro)]dVo"

(2.60)

The second volume integral can be written as the difference of two volume integrals:

'ff g(rlro)Vo *[ y(ro)VOp,(ro)]dVo (2.61)

J.J Vo 0 [yr (ro)g(rjro )Vop, (ro)]dVo - JJ y,(ro )Vop, (ro)Vog(rOro )dVo.

Using the divergence theorem, the first volume integral on the right hand side can be

changed into a surface integral [181:

fv0 .[7,(r0 )g(rdro)Vop,(r 0 )]dvO= dJTn [r(ro)g(rlro)Vop,(ro)pso' (2.62)

On the surface, the density factor (rp) is assumed to go to zero [Eq. (2.36)] [16], so

• d-[Yr(ro)g(rjro)Vop,(ro)So = - (2.63)
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This allows the total pressure wave, Eq. (2.59), to be written:

p, (r)= p,(r)+ Jff [k4 y (ro )g(rlro )p, (r.)+ y (ro)Vop, (ro)Vog(trr)]dVo"

(2.64)

2.2 Backscatter From a Weak Scatterer

2.2.1 Born Approximation

Within the discrete volume, V., the density (y.) and compressibility (y,,) factors

are constant. Outside the discrete volume, the factors are equal to zero. This means that

outside of the volume (V1), the integrand of the volume integral in Eq. (2.64) is zero, and

within the volume: Yp7, y,, = constants. The total pressure wave can now be written:

p,(r) = pi(r) + Jf [k.yrg(rro)p,(ro)+ y Vop,(r 0 )V0g(rr 0 )]dv0 " (2.65)
V.

In the above equation, the subscript "0" for the wavenumber has been change to -m' for

the homogeneous medium. This is to avoid confusion with the subscript "0" used to define

the reference coordinate system within the discrete inhomogeneity. This convention will be

used in the remainder of this thesis.

If the scattered wave from the discrete inhomogeneity is not very intense, then as an

approximation, the total pressure terms, p,(r), within the integrand can be replaced with the

incident pressure terms, pi(r). This is called the Born approximation [16]. For this study,

the speed of sound contrast, ce/c,1., and density contrast, Pa/P., are [19,20]:
cc= 1.028 (2.66)
p./pm 1. 036

The density and compressibility factors are related to the sound speed and density contrasts

by the following relationships:
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(P -o/P. XC. /C.),
(P= (p/p. XCo/C.),

(2.67)

_p= p/p. -

Substituting Eq. (2.66) into Eq. (2.67), the compressibility and density factors are found to

be:
YC = -0.086

YP = +0.035  (2.68)

These factors are small enough to consider the discrete inhomogeneity to be a "weak" scat-

terer, making the Born approximation applicable. Applying the Born approximation to Eq.

(2.65) yields:

p,(r)= p,(r)+ JJJ [k.v.g(rlro)p,(ro)+ y'V op,(ro)Vog(rdro)]dV0. (2.69)
V.

The total pressure wave is determined to be the sum of the incident pressure wave, and the

radiated pressure wave produced from the incident wave scattering from the discrete inho-

mogeneity. Thus, if one can describe the pressure field within the volume, V,, the pressure

anywhere outside the volume can be determined. The Born approximation allows the radi-

ated pressure to be calculated in terms of the incident pressure wave, simplifying the

determination of the pressure field within the discrete inhomogeneity.
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2.2.2 Green's Function and Incident Pressure Wave

For an unbounded medium, at large distances from the scattering volume, V", the

Green's function is [ 17]: l e(k.,-A,. )
g(rlr°) = 4 1r-rl e" (2.70)

PROBLEM GEOMETRY 11

Homogeneous Medium (p ., cM) Pi
Receiver

aDiscrete Volume (V)

a

Figure 2-4: Geometry for the Green's function, the incident pressure wave. and the angle between
the discrete volume's major axis and the receiver (the orientation angle), b.

Here, the position vectors (r and ro) are defined in Eq. (2.42) and Fig. 2-4. The scattered

wavenumber (ks) is a vector pointing in the same direction as the position vector from the

discrete inhomogeneity to the receiver (point of observation). The distance from the scat-

terer to the receiver is much greater than the size of the scatterer, so

r» >> Irol, (2.71)

thus,

Irl--Ir - rol. (2.72)
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Substituting Eq. (2.72) into Eq. (2.70):

g(jro0 ) e 4 (k,-ký e r,""

I e-ike-ik"'r. (2.73)
4;rr

To solve Eq. (2.69), the gradient of the Green's function (Eq. (2.73)] is also needed [181:

V0g(dror) =Vo(.~--eakeI.re ,or,,
47rre l e,.,V o(e-&,.o.)

4yir

i .ei(k~r-k..r,)k,. (2.74)4yir

The distance from the source producing the incident pressure wave to the discrete

scatterer is sufficient (kr >> 1) to allow the incident pressure to be considered a plane wave

of the form

p,(r 0 )= Ae'r. (2.75)

The gradient of the incident pressure wave is

VOP#(r) = VO(Aeil' r,,)

= AVo (e"'"ro )

= Me'x'*0 ki. (2.76)

Now, defining the scattered pressure radiated from the discrete volume as:

p, (r) = fj' [k:'y, g(ýro)pj (ro) + yV opi (ro )Vog(rjro )ldVo. (2.77)

Substituting Eqs. (2.73), (2.74), (2.75), and (2.76) into Eq. (2.77),
p,(r) = Jkf [kr( le -k"rIn) (Aek"• erg )+ y7,(iAe"'Irnki).( ei(k-kor,,)k!• dV°

Aeik'.r .- - (k Ke . . -k, or ,) pks • k-ei(k k "ri-k,.rn))dV

4irr v.

Aelkt JJJ 2 k ik k -. dO
-- - -r v k. " '- kfk)ei(k -k. )r 'd V o. (2 .7 8)
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From Fig. 2-4, it can be seen that

k, =-ki. (2.79)

The magnitude of the wavenumber is:

jkI = Ikml = k. = (ca/co) a hka . (2.80)

Thus,

k,* = k=k, (2.81)

and

ki - k, = 2ki. (2.82)

Using Eqs. (2.81) and (2.82), Eq. (2.78) reduces to

p, Ak •ek- - 7p)ff ei2k, ero dVo. (2.83)
41r)= r (2'.

For a weak scattering, discrete inhomogeneity within a homogeneous medium, the

backscatteced pressure radiating from the volume is a function of the amplitude of the inci-

dent pressure wave, the range from the discrete vol, tme to the receiver, and the shape of the

discrete volume. To remove the effects of range and incident pressure amplitude, a func-

tion known as the backscatter amplitude [ O(e )] is defined in the following formula [21]:
Aik,.r

p.,(r)= e-O(e,) (2.84)

r

Thus, the backscatter amplitude is equal to:

D(ei) = k, (y, -•y, )Jff e i2 k,-r dVo. (2.85)

This shows that the backscatter amplitude is a function of the material properties and shape

of the inhomogeneity, and the direction of the incident wave (ei).
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2.3 Prolate Spheroid Geometry

2.3.1 Shape of Model and the Definition of Integration
Limits

The geometry of the prolate spheroid is integrated using the cylindrical coordinates

(ýo,zo, 0o), defined in Fig. 2-5. The orientation angle, fi, defines the direction of the inci-

dent wave with respect to the prolate spheroid, ej, (Fig. 2-4). The backscatter amplitude

can be written:

k 2  L/2 9(,o)2jr
_ (Y7.- 7p) f f fei2k"rdOo~od~odzo" (2.86)

41r - -L/2 0 0

Where, for a prolate spheroid,

•(Zo) = L 2 - 4z. (2.87)
L

CYLINDRICAL COORDINATE SYSTEM

YO YO
a d

0 0

a

a 0

-al

Figure 2-5: Cylindrical coordinates and limits on the prolate spheroid for integration.
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The vectors ki and ro can be written in terms of the orientation angle and cylindrical co-

ordinates defined in Figs. 2-4 and 2-5:

k, = -k. [cos(fP)e. + sin(P)e.] (2.88)

and,

r= cos( 0o)e,, + 4o sin( 0o)e,. + zoe:. (2.89)

Within the volume to be integrated, the material properties of the discrete inhomo-

geneity are used, instead of the material properties of the homogeneous medium. This is

referred to as the distorted wave Born approximation, in which the internal wave is as-

sumed to be the same as the incident wave, but is corrected for the material conditions that

the internal wave is exposed to.

The exponent in the integrand of Eq. (2.86) can be written:

i2k, * ro = -i2k, [zD cos(fi) + ýo cos(Oo )sin(fi)]. (2.90)

Applying Eq. (2.90) to Eq. (2.86):
L•2 g(:o) 2*

( k,( - f e -i2k.,,, ci(P) f fo e-i2kn. ) "C- )dOodjodzo. (2.91)
41r -LI2 0 0

2.3.2 Solution of the Integral for the Prolate Spheroid

Geometry

The integral over the variable 0., is a Bessel function of the first kind, of order zero

[22]:
k2  LI2 i2 ( )
41rn.(, - f f e-'Zk: 'O(") f o {2do[2k.ýo sin(fP)]}ddodzo

-L/2 0

-fek foJ4 [2kaýo sin(f#)]dodz. (2.92)
-L/2 0
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To integrate over the variable ýo, the integration variable is changed to /o = 2k.ýo sin(fi):
2~fl = 2 

- [2 k:o in
ow(,) L: "-{'.- i k.)jt ,z,:,,c.(#) tP[k,,ý sin(P)]r, . .. ,,2 k~,,ýOr"-•sin(fl)]d[2k,,o sin(8)]dzo

-L12 [2kL sin(lp)f

k 2 LI 1(zo,)
'T)(Y" - JP fe-i~ktciv(p) fJnoJo(?7o)dI7odzO (.3

8k2 sin 2(f-) (2.93)

Here,

q(zo) = 2k, sin(fi)L 12 - 44. (2.94)
L

The integral over the variable qo produces a Bessel function of the first kind, of order one

[23]:
k2  LI2

D(p)=Sk 2 2(p) (Y, - 7( ) fe-i2k":" c••1P) {17(z )JI [ i7(zo )j}dzo. (2.95)
8k2 sin2 ()-L/2

Substituting Eq. (2.94) into Eq. (2.95), and simplifying:

8k 2 sin 2 (- ) L L2 -4e- Jk[2k,,sin(P L 44TIdzO

8k,2asn -(v)-L/2 2 si..s' -d

ma PI Li2k c%(II)z - [4k,,asin(pi) ( 2 ~ 1
2kaLsin(fp) -Lfe- ( 2 - L2

(2.96)

To perform the final integration, the exponential in the integrand must be changed to a sine

and cosine representation:

e-12k --(P)o = cos(w.Z)--isin(,zo), (2.97)

with y = 2k. cos(f). Defining for simplicity,

k2a(yK _yp)
C0 = ka( -(2.98)

2k Lsin(fp)

and

F(zo) = i(L2 - •J[s4kan(#f) (L 2 - (2.99)
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Eq. (2.96) can be written:
LIZ

0(o3 f C JF(40 )[cos(p 0 ) - i sin(pz0 )Jdzo. (2.100)
-L/2

This equation can be reduced to a simpler form:
0 LIZ

4>(#) = co{ fF(-, )[cos(Wz) - isin(pz0 )]dz0 + J F(z0 )[cos(pz0 ) - isin(pz0 )]dzo

LIZ LIZ

- F(z0 )(cos(pz0) -i sin(pz0 )Jdz0 + JF(z )[cos(pz0) -isin(11z 0 )Jdz0

CO- cfjZF(-z)[cos(1Lz0 )-+isin(-Z 0  )]dzo +JFz )[o(gz0 )[coisi(p4 0)]dz.~y4jdz
0a 0

LIZLI

-2CV fJF(z~,)cos(pz0 )dzo. (2.101)
0

The fact that F(z0 )= F(-z0 ) is used in deriving Eq. (2.101). Substituting Eqs. (2.98) and

(2.99) into Eq. (2.101):

k~a(y~ r-7) LIZkainP ()
0(13) -kaS fl~ _4 ( 2 [kas()( ]cos[2k,, cos(fi)zo dzo

(2.102)

Integrating over the variable z(, [241:

k.2a(y. -y,,) Y2 2 --Y4si(3J[kainP1

X Jý :!Yrf{ 4(f 1 4 k a sin (p) ]Z [2 a c s( # 1

k.aLs(y, 2 2~4 L3 4k lain()LcoZf)

- ý [Lkasink 142 + n2 (13 +O U2 cs(iJ 21
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The cylindrical Bessel function J. 2. (0, can be transformed into a spherical Bessel function

j, (c), by the following equation [25]:

N2 ( J (0 -F (2.104)

Applying Eq. (2.104) to Eq. (2.103):

_ k-'aL(,y - ro) j, [k. 4 s ([)+ Lc p + °e CO ) 2

S= )[k 4a2 sin2 (f[)k+ 2 cos2(+p)]

k- 2,a L(YK, _ 7,) ji[k. j;aTSin2 (fi) + L! O2co

2 k VF4a2 sin 2(fl)+ 12 cos2(fp) . (2.105)

The spherical Bessel function of the first kind of order one can be written as [25]:

j _ (C) cos()]. (2.106)

Utilizing Eq. (2.106) to rewrite Eq. (2.105):

(fi) ~ .= ,aL(y. - rp)
2 ka[4a• 2 sin 2 (i) + L cos•2(•)]

x sin[k" V-a2sin2 (f)+ L2 cos2(fi) r 211

{snkal, 7 sin2 (p)+i2CoS2(.8)] o~i

h2L(7y - YP)

[sin 2 (j6)+(L IO2(
sin[-2k,-a .sin2(fl+ (L2 L2(p)

Lb h ~ ~2a) J co Lk. a Ii2 +(2
2k• a i2, ( + ( cos2(P)2

(2.107)
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This is the equation for the backscatter amplitude as a function of orientation angle. The

equation can be written in a more compact form by defining,

W(P/u) = sins(f2)+ cos,(#l). (2.108)

Substituting Eq. (2.108) into Eq. (2.107):

L(yK - rP) [ sin[(k.a)WOl)
O(P)= I !(J -co4(k.a)$P)} (2.109)

A parameter called the differential backscatter cross section is defined as follows

[21]:
o.,,,(]) = IO(Pj. (2.110)

Thus, the differential backscatter cross section is:

A 4 2(f) [(ka)W(fl) -cos(k".a)(-j (2.111)

The backscatter cross section is related to another parameter, the backscatter target strength.

Backscatter target strength is defined as [26,27]:

TS= 0logr - I, (2.112)

where Are is a reference area used to make the argument of the logarithm dimensionless.

The cross section is seen to be a function of shape and material properties of the

prolate spheroid as well as acoustic frequency. It is not solely a function of ka, as W(fl) is

a function of a, but not a function of acoustic frequency (wavenumber). Nor is it a func-

tion of L/(2a) as the [(ka) W(P)J terms are related to, but not sole functions of L/(2a).

The cross section is characterized by L and a. This is as expected. Both are used to

define the shape of the spheroid, but the ratio of L and a is not sufficient, as the ratio does

not account for the size of the inhomogeneity with respect to the acoustic wavelength.
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2.4 Ideal Backscatter Directivity Pattern

By plotting the equation for the differential backscatter cross section versus orienta-

tion angle [Eq. (2.111)], the backscatter directivity pattern is produced. The directivity

patterns are normalized to the maximum backscatter cross section, since the shape of the

curves and not their absolute amplitudes are being studied. Figure 2-6 shows normalized

backscatter directivity patterns for various acoustic frequencies. The angular width of main

(broadside) lobe of this plot is referred to as the "beamwidth" in this thesis (not to be con-

fused with "beamwidth" of the radiation pattern of a transducer).

The beamwidth for this analysis is defined as the angle subtended between the

smallest and largest angles at which the backscatter cross section reaches one-half the

maximum value of the backscatter cross section. The beamwidth has been marked on Fig.

2-6 as a horizontal line at a normalized backscatter cross section of 0.5.

Referring to Fig. 2-6, it is seen that the general trend is for the beamwidth of an

individual lobe to get narrower with increasing frequency [Fig. 2-6 (a-c)]. Also, as the

acoustic frequency is increased, the side lobes have a greater magnitude compared to the

center lobe [Fig. 2-6 (d-g)]. This phenomenon can be understood by considering the pro-

late spheroid to be a three-dimensional array of infinitesimal point sources [28,29]. At

certain frequencies, the geometry within the prolate spheroid would cause the pressure

waves from the infinitesimal point sources to add out of phase, causing cancellation of

pressure waves [30]. This produces nulls in the backscattering cross section at certain

values of ka [4,12,14], which in turn results in a splitting of the main lobe [Fig. 2-6 (h).]

At higher frequencies, the null becomes narrower until the two side lobes "degenerate'" into
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Figure 2-6: Normalized backscatter directivity patterns for a weak scattering prolate spheroid in a homoge-
neous medium. The nature of the shape changes in the directivity pattern made it necessary to define the
beamwidth of the main lobe (BW) as the width of the pattern at the point where the backscatter cross sec-
tion (o• is one-half the maximum value. The beamwidth in each subplot is shown as a solid horizontal
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line. The acoustic frequency (f) is given in kilohertz. Note the increase in beamwidth between 175 and
200 kHz and between 325 and 350 kHz. This increase is due to the method of defining the beamwidth.
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a new center lobe [Fig. 2-6 (ij)]. The process repeats itself as frequency continues to

increase [Fig. 2-6 (j-p)].

The phenomena described above result from the model for a decapod shrimp being

a penetrable volume. Another model treats the animal as an impenetrable surface. The tar-

get strength equation for the impenetrable surface is:
"T = 0lgz<2.113)

where, the backscatter cross section for the impenetrable surface is (26]:
a2 sin 2[2kLcos(P)] • 2A_2,

o'ap (f) = 4___cos__4 22 (2.114)

The backscatter directivity pattern based on the impenetrable boundary does not exhibit the

same characteristics as the backscatter directivity pattern based upon the penetrable volume.

At lower acoustic frequencies the patterns have similar shapes, with the prolate spheroid

model exhibiting large. side lobes. At higher acoustic frequencies, the impenetrable plate

has an increasingly narrow beamwidth, but the side lobe structure for the prolate spheroid

gives the prolate spheroid's directivity pattern a wider beamwidth. Figure 2-7 compares

the backscatter directivity patterns for the penetrable and the impenetrable cases.

Beamwidth can be plotted against a dimensionless parameter related to spheroid size

and acoustic frequency. In Fig. 2-8, the beamwidth is plotted as a function of the fre-

quency dependent dimensionless parameters ka and L/a. For each case the frequency is

varied, but it is made non-dimensional by the radius of the prolate spheroid in the ka case,

and by the length of the prolate spheroid in the L/A case. The trends described above re-

ferring to Fig. 2-6 are evident in Fig. 2-8. Over the range of frequencies plotted (50 to 500

kHz), three beamwidth step increases are seen.
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Figure 2-7: Comparison of backscatter directivity patterns for penetrable and impenetrable models [(-):
backscatter directivity pattern for penetrable volume; (- -): backscatter directivity pattern for impenetrable
surface.!
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Also plotted on Fig. 2-8 is the beamwidth as a function of acoustic frequency for

the impenetrable surface. Comparing the penetrable and impenetrable cases, the impene-

trable case shows a monotonic decrease in beamwidth with increasing acoustic frequency,

while the penetrable case produces a non-monotonic function.

Figure 2-8 is plotted for a prolate spheroid 30 mm long and with a maximum radius

of 2.6 mm. These dimensions are based upon the average size of the animals used in the

experiment. (Length was measured from the eyes to the tip of the telson.)

The effects on the plots of beamwidth versus ka and L/A for the range of animal

sizes used in the experiments are shown in Fig. 2-9. Varying the animal size had little ef-

fect on the plot of bearnwidth versus ka. The predicted beamwidths at a given value of ka

varied no more than 20 over the range of animal sizes used. The plot versus L/A shows a

different effect. If the ratio (L/2a) is constant, the predicted beamwidths for changing

animal sizes match closely (within a couple of degrees). Changing the ratio (L/2a) caused

the plot to shift left and right - a decrease in the ratio caused a shift to the left. For the

range of animal sizes and shapes used in the experiment, the maximum shift in the plot ap-

peared to be approximately 10 percent of the value of L/A. This is most noticeable in the

regions where the step increases in beamwidth occur.
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Figure 2-8: Beamwidth of the main lobe of the backscatter directivity pattern for a weak scattering prolate
spheroid (-) and an impenetrable flat plate (--.For this data, L-30 mm and a-2.6 mm.
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Figure 2-9: Effect of animal sizes on plots of beamwidth versus ka and L/A. I(-): L-34 mm. a-2.7 ram.
(L/2a)-6.3; (- -): L-30 mm, a-2.6 mm, (L/2a)-5.7; (-..): L-27 mm. a-2.2 mm. (LJ2a)-6.1l
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2.5 Describing Simulated Data to Approximate
Experimental Limitations

The experiment restrained a live decapod shrimp with a snugly tied human hair in a

seawater tank. Due to the imperfection of this restraint, the shrimp was able to move an

estimated ±3* from the desired orientation angle, hence resulting in error in the scatter

directivity measurements. It was assumed that the shrimp's deviation from the desired

orientation angle could be modeled as a zero-mean Gaussian random variable with a

variance of 3P. This deviation, Af#, was then added to the desired orientation angle (fidgsired)

in the scattering amplitude equation [Eq. (2.111)]:

fla1 = fidesied + Af0 (2.115)

For the experiment, the animal was insonified with typically five "pings" at each

desired orientation angle. Figure 2-10 shows a plot of the angular deviation, averaged over

five pings, versus orientation angle. The general characteristics of this figure agreed with

observations of animal behavior made during the experiment.

The backscatter cross section of a prolate spheroid [Eq. (2.111)], is a continuous

function of the orientation angle, but the measured data occurred at discrete angular incre-

ments of 30, 50, or 100. These discrete points were converted into a continuous function by

means of a cubic spline algorithm. The combined effects of the animal motion within the

restraint and the curve fitting algorithm would tend to smear and/or skew the microstructure

of the backscatter directivity pattern. Figure 2-11 shows a comparison between the back-

scatter directivity pattern for a prolate spheroid and a "fitted curve" prolate spheroid with a

30 Gaussian angular deviation. The beamwidth from a fitted curve (BWcf) could be either

greater than or less than the beamwidth from an unmodified, perfectly restrained prolate
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spheroid (BWid). The difference is dependent upon the effect caused by the angular devia-

tion (Aft); while the process of curve fitting between discrete angular measurements tends

to exaggerate the angular deviation effects.

5 1 1 1 1 1

4 Angular Deviation Modeling Animal Motion

"3

0

< -2-

-3

-4

-5
0 20 40 60 80 100 120 140 160 180

Desired Orientation Angle (degrees)
Figure 2-10: Typical angular deviation added to the desired orientation angle. The angular deviation is a
zero-mean Gaussian random variable with a 3V variance averaged over five pings. This factor was used to
account for the movement of the decapod shrimp within its restraint.

The angular deviation is a Gaussian random variable, this allows the beamwidth as

a function of frequency to be modeled as a Gaussian random process. Figure 2-12 depicts

plots of the mean beamwidth as a function of ka and L/1. The plots were generated by

calculating the beamwidth at a given frequency, taking into account the angular deviation

and sampling at discrete angular positions separated by 5P. One hundred beamwidths were

computed at each frequency. From this sample set, the mean and standard deviation for the

beamwidths were determined. The mean theoretical data is plotted as a solid line (-), the

dashed lines (- -) represents the beamwidths that fall within one standard deviation of the
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Figure 2-11: Comparison of the backscatter directivity pattern for an "ideal" non-moving prolate spheroid
(- -) and the backscatter directivity pattern of the "curve fitted" prolate spheroid with animal motion within
the restraint (-). ["Ideal" (BWid) and "curve fitted" (BWcf) beamwidths are shown as solid horizontal
lines.I
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mean theoretical data, and the dotted lines (') represent the minimum and maximum val-

ues of theoretical beamwidth predicted in the one hundred trial runs performed.

Comparing Fig. 2-12 to Fig. 2-8, it is noted that the mean beamwidth is greater

than the beamwidth of the unmodified, perfectly restrained prolate spheroid over the range

of frequencies evaluated. The unmodified beamwidth of Fig. 2-8 does fall within the maxi-

mum and minimum beamwidths found in the set of one hundred samples at each

frequency. By modeling the theoretical data to reflect to limitations experienced during the

collection of experimental data, the marked increases in the beamwidth at certain frequen-

cies (ka and L/. ) were smoothed out. These step increases, at higher frequencies, were

even more smoothed out. This can be seen by observing Fig. 2-12 at L/A. between 3 and

4, and LIA between 9 and 10; or ka near 2 and ka near 5.2. This phenomenon can be un-

derstood by referring to Fig. 2-6, and noticing that at higher frequencies, there are more

and narrower significant side lobes. These narrow side lobes increase the effect of tile

angular deviation, a small change in angle is more likely to cause a large change in

amplitude; this will cause larger fluctuations in the beamwidth, thus the smoothing of the

step would be greater.

Comparing Fig. 2-12 to Fig. 2-9, over the range of animal sizes studied, the

smearing due to animal motion and sampling limitations covers the changes in beamwidth

versus ka due to animal size differences. The shifts in the plots of beamwidth versus L/A

due to changes in the ratio (L/2a) are not completely hidden by the smearing from experi-

mental limitations. This could add to the discrepancies between the experimental and

theoretical results.
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Figure 2-12: Mean beamwidth of the main lobe of the backscatter directivity pattern for a weak scattering
prolate spheroid. (For this data, L-30 mm and a-2.6 mm. Also depicted are the mean bcamwidth
plus/minus the standard deviation and the maximum and minimum beamwidths computed.)
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Chapter 3

Experimental Measurements

3.1 Overview of Apparatus and Procedures

All of the experiments for this thesis were conducted in an acoustic pulse-echo

laboratory at the Woods Hole Oceanographic Institute (Room G-8, Bigelow Laboratory).

In these experi-nents, a live decapod shrimp was restrained in an acoustically transparent

frame. The animal was then suspended in an 11,000 liter seawater tank (360 cm x 240

cm). It was manually rotated through 3600 in steps of 30, 50 or 10*, while being insonified

by a narrowband (72, 120, 165, 200, 350, 375, 400, 450, 475, and 525 kHz) or a broad-

band (320 to 487 kHz chirp) acoustic transducer.. The backscattered pressure wave was

measured by a second transducer adjacent to the first, to resemble a monostatic geometry.

For each transducer pair and angle of orientation, the backscattered pressure wave was

amplified and sent through an appropriate bandpass filter. After repeating the measurement

for all angles, the data set was stored and analyzed. The backscatter directivity pattern was

determined, and the main lobe width of the directivity pattern was estimated.
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3.2 Laboratory Arrangement

3.2.1 Mechanical Equipment and the Geometry of the
Experiment

There were three major pieces of mechanical equipment needed for the experiments:

an acoustically transparent support to hold and restrain the animal, a method to support the

transducers, and a seawater tank large enough to conduct the experiments.

The frame used to restrain the shrimp is depicted in Fig. 3-1. The animal is an ex-

tremely weak scatterer even at high frequencies; fine monofilament, thread, even horse hair

proved to have a large enough backscatter cross section to adversely influence back-

scattering measurements of the animal. Human hair was found to be a sufficiently weak

scatterer to allow measurements of the animal's backscattered pressure wave.

The side supports of the target frame (Fig. 3-2), although not acoustically

transparent, could be eliminated from the data as the echoes arrived at times different than

that of the animal (that is, the echoes from the supports were "gated out"). When the target

was showing an end-on incidence with respect to the transducers, there was a time

separation between the incident pressure wave reaching the target and either of the

monofilament supports. The time separation, r, is equal to the displacement, s, divided by

the speed of sound in water, c:
=- (3.1)
C
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TARGET FRAME

Rotator Mount

Stainless Steel
Rod

Support
/ z (monofilament)

y

Target

E
0 -

\ Tether
(human hair)

E

Stainless Steel
Rod

60-cm

Figure 3-1: Target frame used to suspend a live animal in a seawater tank. lThe top and bottom
are made of stainless steel rods, 4-mm in diameter. The vertical supports consist of four-pound test
fishing line (monofilament). The animal is tethered at the head and tail with a length of human
hair.]

50



TARGET FRAME -TRANSDUCER GEOMETRY

Receiving End-on Incidence 60-cm
Transducer (0-)o is shown) .(30.L/2).cmj L [.(30.L/2).cm-

Transmitting
Transducer

Supports
(monofilament)

Broadside Incidence
(I3-270 is shown).- -.. -E- E

Receiving -
Transducer -- - Target

S....................... ....................... .. 1-•-- ............ .. ............................................................ . y_

Transmitting ,
Transducer

Figure 3-2: The target frame - transducer geometry designed to prevent the monofilament supports
from interfering with the backscattered pressure signal from the shrimp (target). Top, geometry for
end-on target orientation; bottom, geometry for broadside target orientation.

For these experiments, the maximum sound speed was 1525 m/s, and the largest animal

had a length, L, of 3.4 cm. Thus, the minimum time separation necessary is

(30- _-i)cm lm

1525 m 100cm
sec

r = 185.7/u sec.

If the incident pressure wave signal was less than 185.6 msec, at end-on incidence, the

monofilament supports would not interfere with the scattering from the target. The longest

input signal during these experiments was 100 msec. Referring to the geometries of Figs.

2-4 and 3-2, it is seen that

s = d-cos(fl), (3.2)
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where
L

d = (30- _-)cm.
2

Rearranging Eq. (3.1), the maximum orientation angle,#f,,, for which a time separation

would prevent the supports from interfering with the target is:

=arcc {T]. (3.3)

For the experiments:
0.1525 cm . 1 00psec

f, = psec

arccost (3--cm(30 - 3.4)cm

2

= 57".

Conservatively assuming that the maximum orientation angle for which temporal separation

("time gating") of edges prevents support interference as 45* (vice 570 calculated above),

the maximum allowable beamwidth for the receiving transducer, X,, is found to be (Fig.

3-2):

Xu, = 2- arctan[ dsin(fi) ] _al (3.4)

As before, d is the distance separating the target from the support. The range from the

transducer face to the target is R. The maximum value for the transducer angle, a was 60.

The maximum range was 110 cm. This makes the maximum allowable beamwidth to pre-

vent the supports from interfering with the backscattered pressure wave from the target:

(30- :-*,)cm-osin(45") 6- ]

I { -'2arctan l10cm+3-- )cm-cos(45") ] 2
mx = 11.52.
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The maximum beamwidth of the transducers used in this experiment was measured

to be 80, less than the maximum allowable value of I 1.5* (in this case "beamwidth" is the

width of the main lobe of the diffraction pattern of the transducer). Thus, the target frame

design was transparent. The frame was verified to be transparent by placing it within the

seawater and rotating it through 3600 without a target in the frame. During these tests, the

frame proved to be transparent.

The transducer frame (Fig. 3-3) was required to rigidly hold the transducer pairs in

place within the seawater tank, yet allow focusing of, and rapid changing of the trans-

ducers. The frame also needed to provide for the transducer arrangement for bistatic

calibration. The transducer frame produced met these requirements. Each transducer was

held rigidly in a nylon block; the nylon blocks were each placed on their own stainless steel

rod. The nylon blocks could be positioned vertically (z-direction) on the rod and locked in

place. The transducer-block-rod composite could then be fitted in the combed top and bot-

tom of the frame (y-direction). The composite unit could be rotated in the x-y plane and

locked in place. The entire frame could be moved within the seawater tank and clamped

into place (x-direction).

The seawater tank was an 11,000 liter tank (Fig. 3-4). It was filled with filtered

seawater from Woods Hole Harbor. The water had a lower salinity (31.6 ppt) than ocean

seawater (35 ppt). The mean temperature of the water ranged from 17*C to 23*C. The cor-

responding sound speed can be calculated from [51:

c = 1449.2 + 4.6T - 0.55T2 + 0.00029T3 + (1.34- 0.OIOTXS- 35) + 0.016z,

(3.5)

where c is sound speed in meters per second, T is temperature in degrees Celsius, S is

salinity in parts per thousand, and z is depth in meters. Sound speeds for the temperatures

and salinities measured during the experiments are tabulated in Table 3- I.
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TRANSDUCER FRAME

Galvanized SteelFrame

S' Nylon

Blocks

Transducers

X

, , Steel Rods

Figure 3-3: Transducer frame used to hold acoustic transducers in position for the experiment. (The trans-
ducers were held rigidly in custom made nylon blocks. The nylon blocks could be positioned vertically.
and locked in place on 16 mm stainless steel rods. The rods could be positioned within the frame and
rotated to the desired location, and then locked in place. This provided sufficient control of transducer
position to perform the experiment.)
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Table 3-1, Sound Speeds (m/s) for Various Temperatures and Salinities

Temperature (*C)
Salinity (ppt) 17 18 19 20 21 22 23

31.5 1509 1512 1515 1518 1520 1523 1526
31.6 1509 1512 1515 1518 1520 1523 1526
31.7 1509 1512 1515 1518 1520 1523 1526

SEAWATER TANK

TOP VIEW

\•- Transducers

360-cm

SIDE VIEW

Seawater
. ,- Target E

V Range:
50 to 110-cm

Figure 3-4: Seawater tank in which the experiment was performed. (The I11,000 liter tank was filled with
filtered seawater.)
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If the tank was left for three or more days, a measurable temperature and salinity

gradient was observed. This vertical gradient involved deviations of up to L. I°C and

0.6 ppt, respectively. Since the medium (seawater) is assumed to be homogenous, this

stratification was undesirable. By stirring the tank one or two days prior to any experi-

ment, and then letting the tank settle for at least twelve hours, the seawater was found to be

homogenous to within 0.05 ppt and 0.1 *C.

The desired range, r between the transducer faces and the target was determined by

three criteria [5]:

1) The target should be in the farfield of the transmitting transducer. This allows

the transmitting transducer to be modeled as a point source (with, of course,

directivity).

2) The range should be large enough so that target should be well within the first

Fresnel zone of the source/receiver combination. This ensures that the pressure

field at the target is locally planar.

3) The range should be close enough that backscattered pressure wave produces a

strong enough signal to be useful.

In the farfield of a transducer, the particle velocity is approximately in phase with

the pressure. In this region the pressure wave is radiating outward with a uniform

spherical divergence; thus the pressure is behaving as if it emanated from a point source

rather than a transducer face of finite size. The range beyond which an object (at broadside

to the transducer) can be considered to be in the farfield of the transducer is the range where

the Huygens wavelet traveling from the edge of the transducer no longer interferes

destructively with the wavelet coming from the center of the transducer [5]. (That is, the

range beyond which the difference between the longest path and the shortest path is less

than one-half an acoustic wavelength.) This produces the equation:

<•,- Rif <A (3.6)
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where R. is the range to the transducer's farfield from the center of the transducer face and

R,., is the range to the farfield from the edge of the transducer face. Applying the

Pythagorean relation to the geometry of Fig. 3-5,

RIM, = wR+af (3.7)

FARFIELD CRITERIA

R0

Transducer

Figure 3-5: Geometry for determining the range to the farfield of a piston transducer.

Substituting Eq. (3.7) into Eq. (3.6):

Rf, +a, ans Rff - (3.8)
t 2

Solving for Rif:
r2 " +Rff

a2

2 < ,2+jRa
4 i

Rff ELM.• - (3.9)

A 4
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The American National Standards Institute has arbitrarily specified that [51:
2

¢Raff • (3.10O)

Comparing Eq. (3.9) to Eq. (3.10), it is obvious that Eq. (3.10) is a more restrictive re-

quirement; it specifies a greater range to the transducer's farfield. The criterion of Eq.

(3.10) was used to determine the minimum range. The ranges to the farfield for the trans-

ducers used are given in Table 3-2.

Table 3-2.- Distance to Farfield (Rf) for Various Transducers (c-1520 m/s)

f(kHz) A (cm) a,,,,• (cm) Rif (cm) kRff

72 2.11 3.0 13.4 40

120 1.27 3.0 22.3 111

165 0.92 2.4 19.6 134

200 0.76 2.0 16.5 137

350 0.43 1.3 12.2 177
375 0.41 1.3 13.1 203

400 0.38 1.3 14.0 231
450 0.34 1.3 15.7 292

475 0.32 1.3 16.6 326

525 0.29 1.3 18.3 398

The basic relation for the second range criterion is found by referring to Fig. 3-6.

and noting the relationship:

R-r=Ar. (3.11)

Thefirst Fresnel zone is defined by the diameter, D., at which

Ar= (3.12)
4

Where Ar = A/4, the phase difference between the backscattered signal from the center of

the Fresnel zone and the backscattered signal from the edge of the Fresnel zone is p. This

is because the round trip (backscattered) distance traveled to the edge of the zone is one-half

wavelength longer than the round trip distance to the center. The diameter of the first
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Fresnel zone (D.) is a function of target range (r) and acoustic wavelength (A.). From the

Pythagorean relation:

D,/2 = R-r 2 . (3.13)

FRESNEL ZONE GEOMETRY

Transducer --

rA

Target

Figure 3-6: Geometry for determining the diameter of the first Fresnel zone (DW). at range r. from
the transducer.

Rearranging and substituting Eqs. (3.11) and (3.12) into Eq. (3.13):

DA/ 2 = (r + )2 -r 2

= (+±IJ -- r2

A
2

2 2 16

or,

59



D, = C2A(r +J (3.14)

The target range (r) must be in the farfield of the transmitting transducer,

r e R.&. (3.15).

Applying this to the data in Table 3-2,
2  = kr > kRf >> 1, (3.16)

thus
a

r> --. (3.17)8

This allows Eq. (3.14) to be reduced to:

D, = 21iW. (3.18)

Applying Eq. (3.18) to ranges of 50 and 100 cm, the size of the first Fresnel zone

is computed and tabulated in Table 3-3. These results show that at 100 cm, the diameter of

the first Fresnel zone is approximately four times the maximum length of the animal (3.4

cm) for the three higher frequency transducers. The 72 kHz transducer gave a very low

signal-to-noise ratio (SNR) at a 100 cm range, and was moved into a 50 cm range to im-

prove the signal strength. This produced a satisfactory SNR. From Table 3-3 it is clear

that the target was weil within the first Fresnel zone of the transducer.

Comparing Tables 3-2 and 3-3 to the transducer-to-target-range criteria listed

above, it was found that a range of 50 cm was satisfactory for the 72 kHz transducers and a

range of 100 cm was satisfactory for the other transducers. Due to physical limitations

within the seawater tank, the actual ranges used in the experiments were 54 cm and 107

cm, respectively. These ranges were more conservative than those given in the tables, and

thus the range criteria specified were still satisfied.

60



Table 3-3.- Diameters of the First Fresnel Zone for Ranges of 50 and 100 cm
Dt (cm) D. (cm)

f (kHz) A (cm) (r-50 cm) (r-100 cm)

72 2.11 14.5 20.5
120 1.27 11.3 15.9

165 0.92 9.6 13.6

200 0.76 8.7 12.3

350 0.43 6.6 9.3
375 0.41 6.4 9.1

400 0.38 6.2 8.7

450 0.34 5.8 8.2
475 0.32 5.7 8.0

525 0.29 5.4 7.6

3.2.2 Equipment Set-up and Connections

The data acquisition system (Fig. 3-7) was controlled by a personal computer. The

specifics of the equipment used are given in Table 3-4.

All equipment was powered up at least thirty minutes prior to use to allow the de-

vices to reach a steady operating temperature. Using a software package, ATF, developed

by Bob Eastwood of WHOI, the computer would initialize the oscilloscope and prescribe

the desired incident pressure wave equation into the function generator. The output from

the function generator would then be sent to the transmitting transducer via the power

amplifier. The function generator's output is also sent to the oscilloscope as a trigger for

the oscilloscope. The data were collected bistatically, that is, there was a separate transmit-

ting and receiving transducer, closely spaced to resemble a "monostatic" geometry. Cables

to and from the transducers were rigged to give as much isolation as possible between the
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relatively high powered transmitted (incident) signal and the much lower powered received

(backscattered) signal. This reduced the noise in the received signal.

The amplified signal excited the transmitting transducer causing it to emit an out-

going pressure wave. This incident pressure wave would strike the target and be scattered;

the backscattered component was sensed by the receiving transducer. The receiving trans-

ducer converted the backscattered pressure wave to an electrical signal. This low powered

electrical signal was amplified and sent to the bandpass filter. The bandpass filter rejected

frequencies above and below the transducer frequency, thus improving the signal-to-noise

ratio of the received electrical signal. The settings on the bandpass filtered are tabulated in

Table 3-5. The settings were determined empirically, during the calibration phase of the

experimental procedure, by adjusting the bandpass filter while observing the received cali-

bration signal. The bandpass filter setting was adjusted by decreasing the width of the pass

band around the central transducer frequency until signal reduction was observed. The

pass band was then increased approximately ten-percent to ensure that there would be no

reduction of the signal by the bandpass filter.

The modified received signal was then sent to the digital oscilloscope. The signal

was further refined within the oscilloscope by subtracting off the systematic noise within

the seawater tank. During the alignment phase of the experimental procedure, approxi-

mately one hundred pulses were averaged withoQ the target in the seawater tank. The

random noise would average out to nearly zero, while the systematic noise would remain.

The systematic noise was due to reflections from surfaces within the tank such as the sides

and bottom of the tank, and the surface of the water. This averaged noise was stored in the

oscilloscope and subtracted from the signals received from the target in real time. The

refined signal was stored in the computer for future analysis.
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Table 3-4.- Electronic Equipment used in the Data Acquisition System

Ewuipment: Description:

Computer DTK Model FEAT-5030, 486DX-50MHz
Computer

Oscilloscope LeCroy 9430, 10-bit 100-Msample/sec Digital
Oscilloscope

Function Generator Analogic, Data Precision Polynomial Waveform
Synthesizer, Model 2020

Bandpass Filter A.P. Circuit Corporation, Variable Frequency

Filter

Power Amplifier ENI Model 2100L RF Power Amplifier

Pre-amplifier Constructed at WHOI

Power Supply Global Specialties Model 1301 A Power Supply

Transmit/Receive Switch Constructed at WHOI

Table 3-5.- Bandpass Filter Settings

Transducer Frequency Bandpass Filter Settings

72 kHz 24-160 kHz

120 kHz 60-200 kHz

165 kHz 60-400 kHz

200 kHz 60-500 kHz
350 kHz 200-800 kHz

375 kHz 200-800 kHz

400 kHz 200-800 kHz

450 kHz 200-900 kHz

475 kHz 200-1000 kHz

525 kHz 200-1000 kHz

.25-.55 MHz chirp 100-1000 kHz
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DATA ACQUISITION SYSTEM

eputer

• Oscilloscope

0 Ch I Ch 2 Function
S4 Generator

Bandpass, Power
Filter Amplifier

Supply Pre-amplifier

I Transmit/
Receive
Switch

Receiving Transmitting
Transducer Transducer

Figure 3-7: Schematic diagram of data acquisition system.
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3.3 Experimental Procedure

Once the laboratory had been set up as described in the previous section, the

experiment was performed using a given pair of transducers. The pair was carefully placed

in the transducer frame. After extended submergence, nucleate bubbles would form on the

transducer faces. The presence of these bubbles could corrupt the data. To prevent the

formation of these bubbles, the transducer faces were coated with a liquid detergent while

remaining in the water. Similar bubbles were also observed to form on the decapod shrimp

and the human hair tether. These were removed by carefully tapping the target frame to

break the bubbles free from the animal, and also carefully wiping fingers along the human

hair to free bubbles from the tether.

All actions in and around the tank were performed with slow deliberation to prevent

disturbing the seawater. The higher frequency gravity waves in the seawater tank would

dissipate within minutes, but lower frequency gravity waves appeared to cause fluctuations

in the backscattered wave several hours later. This was especially evident at lower acoustic

frequencies with a temperature and/or salinity gradient in the seawater tank.
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3.3.1 System Calibration

The first phase of the experiment was calibration of the system. The purpose of the

system calibration is to accurately measure the overall system sensitivity. The system

sensitivity produced a reference to which the data collected could be compared to. It also

provided a quick check that the equipment was operating correctly.

TRANSDUCER CALIBRATION

R-100 cm

Transmitting Receiving
Transducer Transducer

Figure 3-8: Transducer configuration for calibration of the data acquisition system. (R is the
range between transducer faces. During the actual measurements, the range was 98 cm. vice 100 cm.
due to physical limitations within the transducer frame.)

The calibration was performed by having the transducers face each other in the

transducer frame, approximately 100 cm apart (Fig. 3-8). While observing the received

signal on the oscilloscope, the transducers were individually rotated about 100 in each di-

rection, noting the angular position at which the observed signal was at a maximum. Both

transducers were then placed at the angular positions which produced the greatest signal.
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The input and maximum output voltages were recorded, and the maximized received signal

was stored in the computer's memory.

3.3.2 Alignment of Transducers and Measurement of
Systematic Noise

TRANSDUCER ALIGNMENT

Receiving
Transducer

r

,,, •~~-- - -- = = = -

Transducer Target
Angle

Transmitting
Transducer

Figure 3-9- Configuration for transducer alignment. (r is the range from the transducer face to the
target; s is the centerline separation between the transducers; a is defined as the "transducer
angle".)

After the system calibration, the transducers had to be aligned such that the center of

the beam of each transducer was aimed at the location where the target would be. This was

done by connecting each transducer, in turn, in a monostatic configuration. Figure 3-7

shows the bistatic configuration in which there are two transducers: one transmitting and

one receiving. For the monostatic configuration, only one transducer is used, the

transmit/receive switch was connected into the system with only one transducer in use.
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The transmit/receive switch would cause the single transducer to act alternately as a trans-

mitter and a receiver.

The centerlines of the transducers were physically separated, thus there was some

transducer angle, a, at which the transducers would be focused on the target (Fig. 3-9).

Table 3-6 gives the transducer angle for the transducers used at ranges of 54 and 107 cm.

The formula for computing the transducer angle is:

a= arctan UT T (3.19)

where a is the transducer angle, s is the distance between the centerlines of the transducer

faces, and r is the range between the target and the transducer.

Table 3-6.- Transducer Angles at Ranges of 54 and 107 centimeters

Transducer Centerline-to-Centerline Transducer Angle Transducer Angle

Frequency Separation (s) (r-54 cm) (r- 107 cm)

72 kHz 10.8 cm 5.70 2.80

120 kHz 7.4 cm 3.90 2.00

165 kHz 5.2 cm 2.80 1.40

200 kHz 5.2 cm 2.80 1.40

500 kHz 4.6 cm 2.40 1.20

The alignment was performed by placing a 25-mm-diameter steel ball (suspended

by monofilament) at the same position in the seawater tank that the decapod shrimp would

occupy. Then, with the "receiving" transducer connected in a monostatic configuration, it

was rotated a/2 degrees to the right of the x-axis (see Fig. 3-3). From this position, it was

rotated 100 in each direction. During the rotation, the received signal was monitored on the

oscilloscope, the angular position where the received signal was at a maximum was noted.

The "receiving" transducer was placed at the noted angular position and locked in place.

This procedure was then repeated for the "transmitting" transducer.
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After aligning both transducers monostatically, they were restored to the bistatic

configuration. The steel ball was then moved up and down, from side to side, and toward

and away from the transducers. While the ball was being moved, the received signal was

observed on the oscilloscope. This was to verify that, in the bistatic configuration, the sys-

tem was focused on the target, and that the beams were narrow enough that scattering from

the frame would not interfere with scattering from the target.

The steel ball was removed, and the systematic background noise was measured by

averaging at least 100 scattered signals with the target not in the seawater tank. This back-

ground signal was stored in the oscilloscope's memory and used to refine the data

collected, in real time, from the backscattering off of the decapod shrimp.

3.3.3 Data Acquisition

The data was attained by carefully placing the target frame and target in the seawater

tank, at the focal point of the transducers. The animal was then visually aligned with its

head toward the transducers. This "end-on" incidence was defined as f#-0*. The animal

was then insonified one, ten, fifteen, or twenty times and rotated three, five, or ten

degrees, depending on the data set. In each data set the animal was rotated a total of 3600 in

either the clockwise or counter-clockwise direction. The data sets are summarized in Table

3-7.

The number of insonification events (pings) and the angular increments were varied

to provide a sufficient number of data points, at a sufficient number angular positions to

provide an accurate mapping of the backscatter directiv`ty pattern of the animal.

Additionally, the data had to be collected rapidly enough so that the animal's motion would

be consistent (active swimming or passive resting) throughout the data taking process.
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With the apparatus available, both of these criteria could not be met. Thus, on data runs 4

through 7 both **fast angular sweep" and "slow angular sweep" data sets were acquired. A

fast angular sweep data set consisted of performing one insonification event every 30 for

360'. This took approximately 90 seconds to perform, but the data was more irregular than

slow angular sweep data sets. The slow angular sweep data sets generally consisted of

fifteen insonification events every 5* for 3600. These data sets took approximately

75 minutes. The slow angular sweep data sets tended to smear the structure of the

backscatter directivity pattern, but gave more consistent results.

The rotation direction was varied in data runs 5 through 15 because of the asym-

metries between port and starboard beamwidths measured. By comparing the port and

starboard beamwidths in both the clockwise and counter-clockwise directions it was de-

termined that the asymmetries were due to the stochastic nature of the measurements and

animal movement, instead of being due to physical differences.

For data runs 9 through 15 a broadband 500 kHz transducer was used. A\t these

higher frequencies (from 350 to 525 kHz), the fast angular sweep data sets produced no

useful data due to lower SNR and large irregularities at the higher acoustic frequencies.
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Table 3-7.- Animal Size and Data Sampled in the Experiments

Pings per Size of Direction
Data Set Length Mean Angular Angular of
Number Animal (L) Radius (a) Step Step Rotation

1 #1 30.2 mm 2.5 mm 20 10 CW

2 #2 27.1 mm 2.4 mm 10 5 CW

3 #3 26.2 mm 2.0 mm 15 5 CW

4a #4 34.1 mm 2.7 mm 15 5 CW

4b #4 34.1 mm 2.7 mm 1 3 CW

5a #4 34.1 mm 2.7 mm 1 3 CW

5b #4 34.1 mm 2.7 mm 15 5 Cw

5c #4 34.1 mm 2.7 mm 15 5 CCW

6a #5 30.1 mm 2.6 mm 15 5 CW

6b #5 30.1 mm 2.6 mm 15 5 CCW

6c #5 30.1 mm 2.6 mm 1 3 CW

6d #5 30.1 mm 2.6 mm 1 3 CCW

7a #5 30.1 mm 2.6 mm 15 5 CW

7b #5 30.1 mm 2.6 mm 15 5 CCW

7c #5 30.1 mm 2.6 mm 1 3 CW

7d #5 30.1 mm 2.6 mm 1 3 CCW

8a #5 30.1 mm 2.6 mm 1 3 CW

8b #5 30.1 mm 2.6 mm 1 3 CCW

9 #6 30.0 mm 2.4 mm 15 5 CW

10 #6 30.0 mm 2.4 mm 15 5 CCW

11 #6 30.0 mm 2.4 mm 15 5 CW

12 #7 28.2 mm 2.4 mm 15 5 CCW

13 #7 28.2 mm 2.4 mm 15 5 CW

14 #7 28.2 mm 2.4 mm 15 5 CCW

15 #7 28.2 mm 2.4 mm 16 5 CW
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3.4 Data Processing and Results

The stored "'raw" data record corresponded to a backscattered pressure wave result-

ing from a single insonification event (Fig. 3-10). Data runs 1 through 14 were attained

with the incident pressure wave being produced by a narrowband signal. The scattered

pressure wave was acquired within a period short enough so that only the backscattered

signal from the animal was processed. The incident pressure wave had a sufficient pulse

length to allow the backscattered signal from the animal to reach a steady-state. The steady-

state echo allowed the insonification to be characterized by the maximum amplitude of the

echo.

0.2

0.15 -f-l167 kHzjO.l -4

0.05

-0.05

• -0.1

-0.15

-0.2

1.5 1.55 1.6 1.65 1.7 1.75
time (msec)

Figure 3-10: Typical backscattered pressure wave from a decapod shrimp. (This was collected at broadside
orientation of an animal insonified at an acoustic frequency of 167 kHz. The horizontal scale is the time. in
milliseconds, since the incident pressure wave was initiated. The incident pressure wave was a sinusoid
with an amplitude of 2 volts, and a pulse length of 0.1 msec.)
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The amplitude was calculated by determining the maximum envelope of the time

series. Each insonification event was thus characterized by a single number corresponding

to the backscatter amplitude [21 1:

1 ik 71r) (3.20)$ Ae i"-

The data acquisition system measured the instantaneous value of the backscattered pressure

(time-series) signal [31,32]. The backscatter cross section of each insonification event was

calculated, and then the resultant points for each angular position were then averaged to

give a mean backscatter cross section for a given orientation angle [5,33,34]. The peak

backscatter cross section is related to the peak backscatter amplitude by [21 ]:

S(3.21)

The mean backscatter cross section for a given orientation angle was determined by:

in
Oh, (fI)-=X•.•hx,(f), (3.22)

where n is the number of insonification events at a given orientation angle.

For data run 15, a chirp signal was used to excite the broadband 500 kHz

transducer at a frequency range of 250 to 550 kHz. The backscattered pressure wave

resulting from the chirp signal gave a continuous frequency response for the animal over

the frequency range of the chirp. The disadvantage of using a chirp signal was that the

energy at any given frequency was less than the energy for a narrowband signal at that

frequency [35].

The data acquired from the chirp was processed by computing the Fourier

transform of the backscattered pressure wave. The magnitude of Fourier transformed

signal at a specific frequency and orientation was then squared and averaged. This

produced equivalent results in the frequency domain as Eqs. (3.21) and (3.22) yielded in

the time domain [36].
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The resultant discrete values for mean backscatter cross section, from both the

narrowband and broadband pressure waves, were fitted to a smooth curve by use of a

cubic spline function [37]. The smoothed curves were then normalized to the maximum

value of the backscatter cross section measured at each specific acoustic frequency.

resulting in normalized backscatter directivity patterns for the decapod shrimp (Figs. 3-11

and 3-12).

Figure 3-11 presents the backscatter directivity plots for the narrowband data sets.

It is arranged in order of increasing ka and L)... The system noise for these data runs

was less than the minimum averaged backscatter cross section of the animal, except for data

set number 4 [Fig. 3-1 l(c,d)]. Thus, we had a measurable signal at all orientation angles

for the remaining data sets; and since the shape of the backscatter directivity patterns was

derived by comparing measurable signals, system noise was not a factor in these data sets.

On data set number 4 system noise was approximately 20 percent of the peak signal, and

masked the signals at orientation angles other than the.broadside aspects. This could have

caused a widening of the experimentally measured main lobe.

From the normalized backscatter directivity patterns, the broadside orientation

beamwidths were measured. These beamwidths were the same beamwidths defined in

chapter 2: the angle subtended between the smallest and largest angles at which the

backscatter cross section reaches one-half the maximum value of the backscatter cross

section. Table 3-8 lists the experimentally measured beamwidths from the narrowband

analysis. Some of the narrowband data sets exhibited irregular spikes [data sets: 4a, 4b, 3,

14, 13; Fig. 3-1 1(c,dj,q,t)]. These spikes produced unnaturally large beamwidths if the

definition in chapter 2 was followed blindly. For these data sets, the beamwidth was

measured conservatively as the author's *best guess" of the boundaries of the sometimes

jagged main lobe. The "recorded" beamwidths are shown on Fig. 3-11 as horizontal

chords. Due to the above use of the author's "artistic license", Fig. 3-11 includes most

data to archive the results and allow the reader to judge the validity of assumptions.
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Figure 3-11 (a-c): Examples of measured backscatter directivity patterns for decapod shrimp. [Top. data set
number 8a (fast angular sweep), animal #5; middle, data set number 8b (fast angular sweep). animal #5:
bottom, data set number 4a (slow angular sweep), animal #4.1
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Figure 3-11 (d-f): Examples of measured backscatter directivity patterns for decapod shrimp. [Top, data set
number 4b (fast angular sweep), animal #4; middle, data set number I (slow angular sweep), animal #1:
bottom, data set number 7a (slow angular sweep), animal #5.1
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Figure 3-11 (g-i): Examples of measured backscatter directivity patterns for decapod shrimp. [Top, data set
number 7b (slow angular sweep), animal #5; middle, data set number 7c (fast angular sweep), animal #5:
bottom, data set number 7d (fast angular sweep), animal #5.]

77



1 I f-167 kHz

S0.8 ka-1.38
LA-2.91

S0.6
U BWp- 160  BW-250

90.4

1 0.2-
Z

0
0 50 100 150 200 250 300 350

Orientation Angle (degrees)

C (k) f-167 kHz.€2
S0.8 ka- 1.79

• ~L64A-3.33
' 0.6
SBWp - 18- BW- 130
.0.4 P

90.2
0

0
0 50 100 150 200 250 300 350

Orientation Angle (degrees)

1
C () f- 167 kHz.2
S0.8 ka- 1.79

06LA-3.33,80.6-
O 'BWp - 12" BWs- 16"

.0.4

20.2
0Z

0 50 100 150 200 250 300 350
Orientation Angle (degrees)

Figure 3-11 (j-1): Examples of measured backscatter directivity patterns for decapod shrimp. [Top. data set
number 3 (slow angular sweep), animal #3; middle, data set number 6a (slow angular sweep), animal #5:
bottom, data set number 6b (slow angular sweep), animal #5.1
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Figure 3-1 1(m-o): Examples of measured backscatter directivity patterns for decapod shrimp. [Top. data
set number 6c (fast angular sweep), animal #5; middle, data set number 6d (fast angular sweep). animal #5:
bottom, data set number 2 (slow angular sweep), animal #2.1
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Figure 3-11 (p-r): Examples of measured backscatter directivity patterns for decapod shrimp. I Top. data set
number 9 (slow angular sweep), animal #6; middle, data set number 14 (slow angular sweep), animal #7;
bottom, data set number 10 (slow angular sweep), animal #6.1
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Figure 3-11 (s-u): Examples of measured backscatter directivity patterns for decapod shrimp. [Top, data set
number I I (slow angular sweep), animal #6; middle, data set number 13 (slow angular sweep). animal #7:
bottom, data set number 12 (slow angular sweep), animal #7.]
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Table 3-8.- Experimentally Measured Beamwidths from Narrowband Analyses

Data Set Transducer Port Starboard
Number Animal Frequency ka LlIA Beamwidth Beamwidth

1 #1 120 kHz 1.21 2.38 220 170

2 #2 200 kHz 1.98 3.56 140 280

3 #3 167 kHz 1.38 2.91 160 25*

4a #4 72 kHz 0.80 1.63 330 330

4b #4 72 kHz 0.80 1.63 24* 270

5a #4 200 kHz 2.23 4.52 180 180

5b #4 200 kHz 2.23 4.52 200 230

5c #4 200 kHz 2.23 4.52 160 270

6a #5 167 kHz 1.79 3.33 180 130

6b #5 167 kHz 1.79 3.33 120 160

6c #5 167 kHz 1.79 3.33 130 150

6d #5 167 kHz 1.79 3.33 150 150

7a #5 125 kHz 1.34 2.49 180 120

7b #5 125 kHz 1.34 2.49 170 140

7c #5 125 kHz 1.34 2.49 160 210

7d #5 125 kHz 1.34 2.49 160 220

8a #5 72 kHz 0.77 1.44 210 190

8b #5 72 kHz 0.77 1.44 160 170

9 #6 350 kHz 3.47 6.91 30* 140
10 #6 400 kHz 3.97 7.89 26* 20(

11 6 450 kHz 4.46 8.88 20* 80

12 #7 525 kHz 5.21 9.67 250 170

13 #7 475 kHz 4.71 8.75 150 8*

14 #7 375 kHz 3.72 6.91 22 330
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Figure 3-12 shows the results of the data from the broadband chirp for a slow

angular sweep at acoustic frequencies of 320 to 487 kHz in steps of 6.7 kHz. Table 3-9

lists the results from the broadband chirp. As discussed earlier in this section, the broad-

band chirp gave a range of frequencies at the expense of a lower energy at any given

frequencies. This lower energy, coupled with animal motion, lead to the port aspect

producing no useful data. It is believed that the backscatter directivity pattern was similar

to the narrowband backscatter directivity pattern illustrated in Fig. 3-11 (r) and at the lower

energy of the incident pressure wave, no useful signal was received from the port aspect.

Thus, only the starboard aspect is depicted in Fig. 3-12 and enumerated in Table 3-9.

(Note, in comparing Figs. 3-11 and 3-12, the horizontal axis of Fig. 3-12 is such that 00

corresponds to the data from the telson aspect and 1800 corresponds to the head aspect data;

whereas the horizontal axis of Fig. 3-11 is such that at 0° and 360° correspond to the data

from the head aspect and 1800 to data from the telson aspect data.)

Observing Fig. 3-12, two chords representing beamnwidth are presented. They are

separated vertically for illustrative purposes only. The upper one shows the "no rogue"

based beamwidth (BWN) that ignores a certain "rogue" side lobe that reaches 50 percent of

the maximum cross section at an acoustic frequency on 420 kHz [Fig. 3-12(p)]. This side

lobe does not appear to be part of the main lobe, as it drifts away from the main lobe as the

frequency is increased [Fig. 3-12(p-z)], instead of degenerating into the main lobe as

would be expected from theory (Fig. 2-6). The lower chord is the "rogue" based

beamwidth (BWR) that includes this side lobe. Inclusion or exclusion of this side lobe is

purely subjective, hence both sets of estimates are given.

Similar experiments were conducted by Greenlaw [151 in 1990 over a frequency

range of 190 to 230 kHz on live and preserved euphausiids (Euphausia pacifica) at single

frequencies. This animal is a species of elongated zooplankton similar in shape to the

decapod shrimp used in this thesis. Greenlaw's experiments presented the half-power

beamwidth as a function of L/A. The corresponding values of ka were found by using
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the Lia ratio for Euphausia pacifica. For these animals, L/a =14 [38]. These results

cover a smaller frequency range than the data listed previously, but the sixteen data act as

an independent check on a subset of the experimentally determined points found in this

thesis.

Table 3-9.- Experimentally Measured Beamwidths from Broadband Analyses
(Data Set Number 15, Animal #7)

"No rogue" -Rogue"
Frequency ka LIA based based

Beamwidth Beaniwidth

320 kHz 3.17 5.94 100 100

327 kHz 3.24 6.06 100 100

333 kHz 3.31 6.18 81 80

340 kHz 3.37 6.31 91 9'

347 kHz 3.43 6.43 260 260,

353 kHz 3.51 6.56 250 2.50

360 kHz 3.57 6.68 240 240

367 kHz 3.64 6.80 280 280

373 kHz 3.70 6.93 270 270

380 kHz 3.77 7.05 250 250

387 kHz 3.84 7.17 250 250

393 kHz 3.90 7.30 260 260

400 kHz 3.97 7.42 250 250

407 kHz 4.03 7.54 240 240

413 kHz 4.10 7.67 24P 240

420 kHz 4.17 7.79 210 310

427 kHz 4.23 7.92 190 330

433 kHz 4.30 8.04 190 340

440 kHz 4.37 8.16 180 330

447 kHz 4.43 8.29 170 350

453 kHz 4.50 8.41 170 370

460 kHz 4.56 8.53 1 70 380
467 kHz 4.63 8.66 170 400

473 kHz 4.70 8.78 160 390

480 kHz 4.76 8.91 160 400

487 kHz 4.83 9.03 160 400
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Figure 3-12(a-h): Directivity patterns from "chirp" data. This is the starboard aspect of the animal, with
the head at 1800 and the telson at 00. (Note the dramatic increase in beamwidth between acoustic
frequencies of 340 and 347 kHz.)
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Figure 3-12(i-p): Directivity patterns from -chirp- data. This is the starboard aspect of the animal, with
the head at 1800 and the telson at 0". (Note the growth of the "rogue" side lobe at acoustic frequency of
420 kHz.)
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Figure 3-12(q-x): Directivity patterns from "'chirp" data. This is the starboard aspect of the animal, with
the head at 180* and the telson at 00. (Observe the increased separation of the "'rogue" side lobe away from
the center lobe.)
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Figure 3-12(y,z): Directivity patterns from "'chirp" data. This is the starboard aspect of the animal, with
the head at 1800 and the telson at 0°.

Table 3- 10.- Data from Greenlaw's Measurements of Euphausia Pacifica (1990)

Data Set Half-power
Number ka L/A Beamwidth

1 0.83 1.86 17.50

2 0.97 2.16 16.50

3 1.03 2.30 15.20

4 1.03 2.30 15.00

5 1.09 2.43 16.80

6 1.14 2.53 16.50

7 1.14 2.5-3 14.00

8 1.19 2.65 15.20

9 1.19 2.65 15.00

10 1.19 2.65 14.50

11 1.21 2.70 12.00

12 1.25 2.78 12.50

13 1.31 2.91 14.50

14 1.31 2.91 11.20

15 1.37 3.05 12.00

16 1.37 3.05 11.00
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Chapter. 4

Synthesis and Discussion

Figure 4-1 shows the experimental data from Tables 3-8, 3-9 and 3-10 plotted with

theoretical prediction of beamwidth versus ka and L/A (Fig. 2-12). The mean theoretical

curve is plotted as a solid line (-),while the dashed lines (- -) represent the beamwidths

that fall within one standard deviation of the mean of the one hundred trial runs performed.

The narrowband data sets are denoted by a circle ('o'); the broadband chirp results are

denoted by a cross within a circle ('V') for the "no rogue" data, or an asterisk ('*') for the

"rogue" data; and the results from Greenlaw's experiments are denoted by a cross ('+').

Most data generally follow the predicted trends of the theoretical beamwidth.

The experimentally measured beamwidths tend to decrease monotonically for values

of ka less than 1.9 and L/A less than 3.4. Beyond those points the beamwidths oscillate,

more-or-less about a mean value of approximately 190.

The narrowband data set number 2 (ka -1.98 and LIA -3.56) shows the first step

increment in beamwidth. The results from the broadband chirp signal show quite clearly a

second step increase at ka-3.4 (L/A -6.5). These values of ka correspond to the nulls in

target strength versus ka plots for elongated zooplankton [2,4]. After this second step

increase, the "no rogue"-based beamwidths generally decrease with increasing acoustic

frequency. This local monotonic decrease is supported by the narrowband data collected in

this region, until the 525 kHz data shows an increasing trend in beamwidth (ka-5.2,

L/A -9.7). Conversely, at ka-4.2 (L/A -7.8) the "rogue"-based beamwidths increase

with acoustic frequency to a value of around 400. As discussed before, the effect is due to
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the definition of the main lobe, something that is subjective with these types of patterns.

While this author believes that the rogue side lobe is not associated with the main lobe, its

effect on the directivity pattern should not be ignored.

The narrowband data gathered at 400, 450, and 475 kHz show a decreasing trend

in beamwidth. Yet, observing Fig. 3-1 1 (s,t) there is evidence of a rogue side lobe (smaller

than that observed in the chirp echoes) that could potentially increase the beamnwidth. Thus

the prolate spheroid model for elongated zooplankton is apparently valid up to values of

ka-4 and L/A -8, beyond which echo features from the animal's microstructure and the

definition used for beamwidth cause the experimental data to deviate from the simplified

theoretical predictions.

In addition to the beamwidth, the level of the side lobes had some interesting

properties. From Fig. 3-11 it is noted that the side lobes of the backscatter directivity pat-

tern for the decapod shrimp had a magnitude in the range of approximately 5 percent of the

peak value of the main lobe at lower acoustic frequencies (72 and 125 kHz), 5 to 10 percent

of the peak value of the main lobe at the middle acoustic frequencies (167 and 200 kHz),

and 10 to 20 percent of the peak value of the main lobe at higher acoustic frequencies (350

to 525 kHz). These average side lobe levels will be referred to as the pedestal of the

backscatter (cross section) directivity pattern. (Independent experiments by Greenlaw also

showed approximately the same corresponding peak-to-pedestal ratio at 200 kHz [15).)

Figure 2-11 shows that the pedestal of backscatter directivity pattern of the prolate spheroid

was smaller.

The maximum normalized target strength at end-on incidence on the prolate

spheroid is plotted in Fig. 4-2. End-on incidence is being defined as orientation angles (fi)

between 0* and 100. The target strength is presented in decibels (dB), where [391:

1 dB = l0loglo ( 'b } (4.1)

90



45

Beamwidth40- VS. ,

35 *
00 *

030 9

-S 25- \\ a 06 0 -
t.o ,' IL---

CD0 ' 8, A,10 , I5 ', ,/...• t, o . o :

10~ 0. "0,,, 0 am•,-, ,

0I05-

0 1 2 3 4 5 6 7 8 9 10
Characteristic Parameter (LA)

45 1 1

Beamwidth40 vs. ; *

ka

0 0

•b30, 0
1%0

IS
S,0 " 0

20 - 1•, 0 _ ,.-, _,e 0,

""�, o0 0 ,8
15 0., \ 0 /

10--
\t•,§, I " '•i.,i 0" •- *A I tj

5

0
0 1 2 3 4 5

Characteristic Parameter (ka)
Figure 4-1: Experimentally and theoretically determined beamwidths plotted against the characteristic pa-
rameters, ka and L/I. ('o' denotes narrowband data; '*' and 'E' denote chirp data. the '*' data involves
including a "rogue" side lobe in the estimate of beamwidth; and '+' denotes Greenlaw's data. The
theoretical data has modeled animal motion and sampling limitations.)
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Figure 4-2: Theoretical backscatter target strength near end-on incidences. (The normalized target strength
is the maximum target strength for orientation angles between 0* and 100. It is normalized to the maximum
target strength of the backscatter directivity pattern.)

The model predicts a pedestal of 0. 1 to 1 percent of the maximum backscatter cross section

(-30 to -20 dB). This is one or two orders of magnitude less than the pedestal found in the

experimentally derived backscatter directivity patterns of the decapod shrimp. This differ-

ence is possibly due to the failure of the model to account for backscatter from the

microstructures on the animal, such as the telson, pleopods and maxilla [(]. This assump-

tion is supported by the fact that the magnitude of the pedestals observed in Fig. 3-11

increased with increasing acoustic frequencies. Thus, the pedestal may be at least partly

due to the backscatter from microstructures on the animal. [Since the fine structure of the

animal, (such as the legs) is much smaller than the acoustic wavelength, any scattering off

the small parts would depend strongly on wavelength, and hence, frequency.]

We explore the effect that the pedestal has on the plots of theoretical beamwidth

versus ka and L/A by:
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1) distinguishing the average contributions to the echo due to the principle

or smoothed body as , and the microstructure as F,

2) assuming that the cross sections add incoherently.

The backscatter cross section for the animal is then the sum of the backscattering cross

section from the "body" and from the microstructure:

,l= &&.h + U, - (4.2)

1Comparison of Measured and Modeled
Backscatter Directivity Patterns
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0

i /X=-3.31

• 0.6
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0.2 -,

0
0 50 100 150 200 250 300 350

Orientation Angle (degrees)
Figure 4-3: Comparison of a theoretical backscatter directivity pattern with a "pedestal" (-), and an
experimentally determined backscatter directivity pattern (- -).

Figure 4-3 compares an actual backscatter directivity pattern from an animal with the

backscatter directivity pattern from a model that includes a pedestal. For the theoretical

backscatter directivity pattern, the wave form corresponding to the pedestal used was a

zero-mean Gaussian random variable (random phase and amplitude) with a variance

ranging from 0.00 to 0.20, averaged over five pings. The variance was placed at 0.00 for

an acoustic frequency of 50 kHz and at 0.20 for an acoustic frequency of 500 kHz, and
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allowed to vary linearly between these two points. This is to reflect the observed increase

in pedestal magnitude with respect to the main lobe height as acoustic frequency increased.

(A linear change in variance was used over the frequency range due to the paucity of data

- a frequency-to-the-fourth-power relationship between pedestal size and acoustic

frequency may be more appropriate; this would cause only minute changes in the theoretical

calculations of beamwidth.)

This improved model was used to generate the theoretical curves in Fig. 4-4 in the

same fashion that the previous model was used to generate Fig. 4-1. Comparing Figs. 4-1

and 4-4, it is apparent that the correction for the pedestal slightly improved the comparison

between the measured and modeled data.

Finally, the phenomenon of side lobe growth and merger into main lobes made the

main lobe width difficult to define. The arbitrary definition of main lobe width used in this

thesis added some artificiality to the study. As an alternative, the area under the curve of

normalized backscatter directivity patterns was used as a more robust way to examine the

data properties. This area is defined as the "'normalized mean cross section". For an

impenetrable plate, the normalized mean cross section goes to zero as ka is increased.

While the normalized mean cross section for the -ideal" prolate spheroid [Fig. 2-8, Eq. (2-

111)], and the experimental data (Figs. 3-11 and 3-12) tended level off (Fig. 4-5).
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Chapter 5

Conclusions

The data presented show the usefulness of the weakly scattering prolate spheroid

for modeling the acoustic backscatter from an elongated zooplankton up to the values ka--4

and L A--8. The observed beamwidths generally fell within the maximum and minimum

values predicted by the model. Above the values of ka-4 and L/I. -8 large features in the

directivity pattern, presumably from the animal's microstructure, caused the prolate

spheroid model to deviate from the data.

An interesting phenomenon observed (both theoretically and experimentally) was a

set of step increases in heamwidth due to a substantial increase in level of the itearest side

lobes in the vicinity of ka - 2 (LI?.- 3.5) and ka - 3.4 (LI?.- 6.4). These step

increases in beamwidth as acoustic frequency is increased, are in sharp contrast to the trend

predicted for impenetrable flat plates where a monotonic decrease in beamwidth with

increasing acoustic frequency occurs [261. As a general rule, the model based upon a flat

plate underestimated the measured widths for zooplankton at all frequencies. This contrast

is observed whether beamwidth (Fig. 2-8) or a more robust "first order" analysis involving

the area under the normalized backscatter directivity patterns (Fig. 4-5) is measured.

The increase in the level of side lobes (the "pedestal") with increasing acoustic

frequency was observed. This inspired an empirical modification to the otherwise over-

simplified prolate spheroid model. In so doing, the resultant modified prolate spheroid

model is able to predict beamwidths and average side lobe levels over a wide range of

frequencies.
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The data sets collected represent only twenty-five measured backscatter directivity

patterns over an acoustic frequency range of 72 to 525 kHz. More data sets are required

over a larger frequency range and with more closely spaced intervals to further our under-

standing of the scattering phenomenon. In addition, sufficient beamwidths need to be

measured to support a characteristic parameter that accounts for the animal size and shape

with respect to the acoustic wavelength. (The parameters ka and LIA were of limited

value in applying the results to more general cases.)

Zooplankton are usually found in large populations whose orientation may or may

not be chaotic. In order to study the populations acoustically, accurate scattering models

need to be used. Critical to the development is the inclusion of the orientation dependence

of the acoustic backscatter of elongated zooplankton. The results of this thesis represent a

major step toward understanding the orientation dependence.
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